
Chapter 5

Least Squares

The term least squares describes a frequently used approach to solving overdeter-
mined or inexactly specified systems of equations in an approximate sense. Instead
of solving the equations exactly, we seek only to minimize the sum of the squares
of the residuals.

The least squares criterion has important statistical interpretations. If ap-
propriate probabilistic assumptions about underlying error distributions are made,
least squares produces what is known as the maximum-likelihood estimate of the pa-
rameters. Even if the probabilistic assumptions are not satisfied, years of experience
have shown that least squares produces useful results.

The computational techniques for linear least squares problems make use of
orthogonal matrix factorizations.

5.1 Models and Curve Fitting
A very common source of least squares problems is curve fitting. Let t be the
independent variable and let y(t) denote an unknown function of t that we want
to approximate. Assume there are m observations, i.e., values of y measured at
specified values of t:

yi = y(ti), i = 1, . . . , m.

The idea is to model y(t) by a linear combination of n basis functions:

y(t) ≈ β1φ1(t) + · · · + βnφn(t).

The design matrix X is a rectangular matrix of order m by n with elements

xi,j = φj(ti).

The design matrix usually has more rows than columns. In matrix-vector notation,
the model is

y ≈ Xβ.

December 26, 2005

1

2 Chapter 5. Least Squares

The symbol ≈ stands for “is approximately equal to.” We are more precise about
this in the next section, but our emphasis is on least squares approximation.

The basis functions φj(t) can be nonlinear functions of t, but the unknown
parameters, βj , appear in the model linearly. The system of linear equations

Xβ ≈ y

is overdetermined if there are more equations than unknowns. The Matlab back-
slash operator computes a least squares solution to such a system.

beta = X\y

The basis functions might also involve some nonlinear parameters, α1, . . . , αp.
The problem is separable if it involves both linear and nonlinear parameters:

y(t) ≈ β1φ1(t, α) + · · · + βnφn(t, α).

The elements of the design matrix depend upon both t and α:

xi,j = φj(ti, α).

Separable problems can be solved by combining backslash with the Matlab func-
tion fminsearch or one of the nonlinear minimizers available in the Optimization
Toolbox. The new Curve Fitting Toolbox provides a graphical interface for solving
nonlinear fitting problems.

Some common models include the following:

• Straight line: If the model is also linear in t, it is a straight line:

y(t) ≈ β1t + β2.

• Polynomials: The coefficients βj appear linearly. Matlab orders polynomials
with the highest power first:

φj(t) = tn−j , j = 1, . . . , n,

y(t) ≈ β1t
n−1 + · · ·+ βn−1t + βn.

The Matlab function polyfit computes least squares polynomial fits by
setting up the design matrix and using backslash to find the coefficients.

• Rational functions: The coefficients in the numerator appear linearly; the
coefficients in the denominator appear nonlinearly:

φj(t) =
tn−j

α1tn−1 + · · ·+ αn−1t + αn
,

y(t) ≈ β1t
n−1 + · · ·+ βn−1t + βn

α1tn−1 + · · ·+ αn−1t + αn
.

5.2. Norms 3

• Exponentials: The decay rates, λj , appear nonlinearly:

φj(t) = e−λjt,

y(t) ≈ β1e
−λ1t + · · ·+ βne−λnt.

• Log-linear: If there is only one exponential, taking logs makes the model linear
but changes the fit criterion:

y(t) ≈ Keλt,

log y ≈ β1t + β2, with β1 = λ, β2 = log K.

• Gaussians: The means and variances appear nonlinearly:

φj(t) = e
−
(

t−µj
σj

)2

,

y(t) ≈ β1e
−
(

t−µ1
σ1

)2

+ · · ·+ βne−(t−µn
σn

)2

.

5.2 Norms
The residuals are the differences between the observations and the model:

ri = yi −
n∑
1

βjφj(ti, α), i = 1, . . . , m.

Or, in matrix-vector notation,

r = y −X(α)β.

We want to find the α’s and β’s that make the residuals as small as possible.
What do we mean by “small”? In other words, what do we mean when we use the
‘≈’ symbol? There are several possibilities.

• Interpolation: If the number of parameters is equal to the number of obser-
vations, we might be able to make the residuals zero. For linear problems,
this will mean that m = n and that the design matrix X is square. If X is
nonsingular, the β’s are the solution to a square system of linear equations:

β = X \y.

• Least squares: Minimize the sum of the squares of the residuals:

‖r‖2 =
m∑
1

r2
i .

4 Chapter 5. Least Squares

• Weighted least squares: If some observations are more important or more
accurate than others, then we might associate different weights, wj , with
different observations and minimize

‖r‖2w =
m∑
1

wir
2
i .

For example, if the error in the ith observation is approximately ei, then
choose wi = 1/ei.

Any algorithm for solving an unweighted least squares problem can be used
to solve a weighted problem by scaling the observations and design matrix.
We simply multiply both yi and the ith row of X by wi. In Matlab, this
can be accomplished with

X = diag(w)*X
y = diag(w)*y

• One-norm: Minimize the sum of the absolute values of the residuals:

‖r‖1 =
m∑
1

|ri|.

This problem can be reformulated as a linear programming problem, but it is
computationally more difficult than least squares. The resulting parameters
are less sensitive to the presence of spurious data points or outliers.

• Infinity-norm: Minimize the largest residual:

‖r‖∞ = max
i
|ri|.

This is also known as a Chebyshev fit and can be reformulated as a linear
programming problem. Chebyshev fits are frequently used in the design of
digital filters and in the development of approximations for use in mathemat-
ical function libraries.

The Matlab Optimization and Curve Fitting Toolboxes include functions for
one-norm and infinity-norm problems. We will limit ourselves to least squares in
this book.

5.3 censusgui
The NCM program censusgui involves several different linear models. The data
are the total population of the United States, as determined by the U.S. Census,
for the years 1900 to 2000. The units are millions of people.

5.3. censusgui 5

t y
1900 75.995
1910 91.972
1900 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422

The task is to model the population growth and predict the population when t =
2010. The default model in censusgui is a cubic polynomial in t:

y ≈ β1t
3 + β2t

2 + β3t + β4.

There are four unknown coefficients, appearing linearly.

1900 1920 1940 1960 1980 2000
0

50

100

150

200

250

300

350

400
Predict U.S. Population in 2010

M
ill

io
n

s

 312.691

Figure 5.1. censusgui.

Numerically, it’s a bad idea to use powers of t as basis functions when t is
around 1900 or 2000. The design matrix is badly scaled and its columns are nearly
linearly dependent. A much better basis is provided by powers of a translated and
scaled t:

s = (t− 1950)/50.

6 Chapter 5. Least Squares

This new variable is in the interval −1 ≤ s ≤ 1 and the model is

y ≈ β1s
3 + β2s

2 + β3s + β4.

The resulting design matrix is well conditioned.
Figure 5.1 shows the fit to the census data by the default cubic polynomial.

The extrapolation to the year 2010 seems reasonable. The push buttons allow you
to vary the degree of the polynomial. As the degree increases, the fit becomes more
accurate in the sense that ‖r‖ decreases, but it also becomes less useful because the
variation between and outside the observations increases.

The censusgui menu also allows you to choose interpolation by spline and
pchip and to see the log-linear fit

y ≈ Keλt.

Nothing in the censusgui tool attempts to answer the all-important question,
“Which is the best model?” That’s up to you to decide.

5.4 Householder Reflections
Householder reflections are matrix transformations that are the basis for some of the
most powerful and flexible numerical algorithms known. We will use Householder
reflections in this chapter for the solution of linear least squares problems and in a
later chapter for the solution of matrix eigenvalue and singular value problems.

Formally, a Householder reflection is a matrix of the form

H = I − ρuuT ,

where u is any nonzero vector and ρ = 2/‖u‖2. The quantity uuT is a matrix of
rank one where every column is a multiple of u and every row is a multiple of uT .
The resulting matrix H is both symmetric and orthogonal, that is,

HT = H

and
HT H = H2 = I.

In practice, the matrix H is never formed. Instead, the application of H to a
vector x is computed by

τ = ρuT x,

Hx = x− τu.

Geometrically, the vector x is projected onto u and then twice that projection is
subtracted from x.

Figure 5.2 shows a vector u and a line labeled u⊥ that is perpendicular to
u. It also shows two vectors, x and y, and their images, Hx and Hy, under the

5.4. Householder Reflections 7

Householder reflection

x u

Hx

y

Hy

u⊥

Figure 5.2. Householder reflection.

transformation H. The matrix transforms any vector into its mirror image in the
line u⊥. For any vector x, the point halfway between x and Hx, that is, the vector

x− (τ/2)u,

is actually on the line u⊥. In more than two dimensions, u⊥ is the plane perpen-
dicular to the defining vector u.

Figure 5.2 also shows what happens if u bisects the angle between x and one
of the axes. The resulting Hx then falls on that axis. In other words, all but one
of the components of Hx are zero. Moreover, since H is orthogonal, it preserves
length. Consequently, the nonzero component of Hx is ±‖x‖.

For a given vector x, the Householder reflection that zeros all but the kth
component of x is given by

σ = ±‖x‖,
u = x + σek,

ρ = 2/‖u‖2 = 1/(σuk),
H = I − ρuuT .

In the absence of roundoff error, either sign could be chosen for σ, and the resulting
Hx would be on either the positive or the negative kth axis. In the presence of
roundoff error, it is best to choose the sign so that

sign σ = sign xk.

Then the operation xk + σ is actually an addition, not a subtraction.

8 Chapter 5. Least Squares

5.5 The QR Factorization
If all the parameters appear linearly and there are more observations than basis
functions, we have a linear least squares problem. The design matrix X is m by n
with m > n. We want to solve

Xβ ≈ y.

But this system is overdetermined—there are more equations than unknowns. So
we cannot expect to solve the system exactly. Instead, we solve it in the least
squares sense:

minβ‖Xβ − y‖.
A theoretical approach to solving the overdetermined system begins by mul-

tiplying both sides by XT . This reduces the system to a square, n-by-n system
known as the normal equations:

XT Xβ = XT y.

If there are thousands of observations and only a few parameters, the design matrix
X is quite large, but the matrix XT X is small. We have projected y onto the space
spanned by the columns of X. Continuing with this theoretical approach, if the
basis functions are independent, then XT X is nonsingular and

β = (XT X)−1XT y.

This formula for solving linear least squares problems appears in most text-
books on statistics and numerical methods. However, there are several undesirable
aspects to this theoretical approach. We have already seen that using a matrix
inverse to solve a system of equations is more work and less accurate than solving
the system by Gaussian elimination. But, more importantly, the normal equations
are always more badly conditioned than the original overdetermined system. In
fact, the condition number is squared:

κ(XT X) = κ(X)2.

With finite-precision computation, the normal equations can actually become sin-
gular, and (XT X)−1 nonexistent, even though the columns of X are independent.

As an extreme example, consider the design matrix

X =

1 1
δ 0
0 δ

 .

If δ is small, but nonzero, the two columns of X are nearly parallel but are still
linearly independent. The normal equations make the situation worse:

XT X =
(

1 + δ2 1
1 1 + δ2

)
.

5.5. The QR Factorization 9

If |δ| < 10−8, the matrix XT X computed with double-precision floating-point arith-
metic is exactly singular and the inverse required in the classic textbook formula
does not exist.

Matlab avoids the normal equations. The backslash operator not only solves
square, nonsingular systems, but it also computes the least squares solution to
rectangular, overdetermined systems:

β = X \y.

Most of the computation is done by an orthogonalization algorithm known as
the QR factorization. The factorization is computed by the built-in function qr.
The NCM function qrsteps demonstrates the individual steps.

The two versions of the QR factorization are illustrated in Figure 5.3. Both
versions have

X = QR.

In the full version, R is the same size as X and Q is a square matrix with as many
rows as X. In the economy-sized version, Q is the same size as X and R is a square
matrix with as many columns as X. The letter “Q” is a substitute for the letter
“O” in “orthogonal” and the letter “R” is for “right” triangular matrix. The Gram–
Schmidt process described in many linear algebra texts is a related, but numerically
less satisfactory, algorithm that generates the same factorization.

X = Q R

X = Q R

Figure 5.3. Full and economy QR factorizations.

A sequence of Householder reflections is applied to the columns of X to pro-
duce the matrix R:

Hn · · ·H2H1X = R.

10 Chapter 5. Least Squares

The jth column of R is a linear combination of the first j columns of X. Conse-
quently, the elements of R below the main diagonal are zero.

If the same sequence of reflections is applied to the right-hand side, the equa-
tions

Xβ ≈ y

become
Rβ ≈ z,

where
Hn · · ·H2H1y = z.

The first n of these equations is a small, square, triangular system that can be
solved for β by back substitution with the subfunction backsubs in bslashtx. The
coefficients in the remaining m − n equations are all zero, so these equations are
independent of β and the corresponding components of z constitute the transformed
residual. This approach is preferable to the normal equations because Householder
reflections have impeccable numerical credentials and because the resulting trian-
gular system is ready for back substitution.

The matrix Q in the QR factorization is

Q = (Hn · · ·H2H1)T .

To solve least squares problems, we do not have to actually compute Q. In other
uses of the factorization, it may be convenient to have Q explicitly. If we compute
just the first n columns, we have the economy-sized factorization. If we compute
all m columns, we have the full factorization. In either case,

QT Q = I,

so Q has columns that are perpendicular to each other and have unit length. Such
a matrix is said to have orthonormal columns. For the full Q, it is also true that

QQT = I,

so the full Q is an orthogonal matrix.
Let’s illustrate this with a small version of the census example. We will fit the

last six observations with a quadratic:

y(s) ≈ β1s
2 + β2s + β3.

The scaled time s = ((1950:10:2000)’ - 1950)/50 and the observations y are

s y
0.0000 150.6970
0.2000 179.3230
0.4000 203.2120
0.6000 226.5050
0.8000 249.6330
1.0000 281.4220

5.5. The QR Factorization 11

The design matrix is X = [s.*s s ones(size(s))].

0 0 1.0000
0.0400 0.2000 1.0000
0.1600 0.4000 1.0000
0.3600 0.6000 1.0000
0.6400 0.8000 1.0000
1.0000 1.0000 1.0000

The M-file qrsteps shows the steps in the QR factorization.

qrsteps(X,y)

The first step introduces zeros below the diagonal in the first column of X.

-1.2516 -1.4382 -1.7578
0 0.1540 0.9119
0 0.2161 0.6474
0 0.1863 0.2067
0 0.0646 -0.4102
0 -0.1491 -1.2035

The same Householder reflection is applied to y.

-449.3721
160.1447
126.4988
53.9004

-57.2197
-198.0353

Zeros are introduced in the second column.

-1.2516 -1.4382 -1.7578
0 -0.3627 -1.3010
0 0 -0.2781
0 0 -0.5911
0 0 -0.6867
0 0 -0.5649

The second Householder reflection is also applied to y.

-449.3721
-242.3136
-41.8356
-91.2045

-107.4973
-81.8878

Finally, zeros are introduced in the third column and the reflection applied to y.
This produces the triangular matrix R and a modified right-hand side z.

12 Chapter 5. Least Squares

R =
-1.2516 -1.4382 -1.7578

0 -0.3627 -1.3010
0 0 1.1034
0 0 0
0 0 0
0 0 0

z =
-449.3721
-242.3136
168.2334
-1.3202
-3.0801
4.0048

The system of equations Rβ = z is the same size as the original, 6 by 3. We
can solve the first three equations exactly (because R(1 : 3, 1 : 3) is nonsingular).

beta = R(1:3,1:3)\z(1:3)

beta =
5.7013

121.1341
152.4745

This is the same solution beta that the backslash operator computes with

beta = R\z

or

beta = X\y

The last three equations in Rβ = z cannot be satisfied by any choice of β, so the
last three components of z represent the residual. In fact, the two quantities

norm(z(4:6))
norm(X*beta - y)

are both equal to 5.2219. Notice that even though we used the QR factorization,
we never actually computed Q.

The population in the year 2010 can be predicted by evaluating

β1s
2 + β2s + β3

at s = (2010− 1950)/50 = 1.2. This can be done with polyval.

p2010 = polyval(beta,1.2)

p2010 =
306.0453

Censusgui itself, fitting a quadratic to more data, predicts 311.5880. Which do
you think is going to be closer to the actual result of the 2010 census?

5.6. Pseudoinverse 13

5.6 Pseudoinverse
The definition of the pseudoinverse makes use of the Frobenius norm of a matrix:

‖A‖F =

(∑

i

∑

j

a2
i,j

)1/2

.

The Matlab expression norm(X,’fro’) computes the Frobenius norm. ‖A‖F is
the same as the 2-norm of the long vector formed from all the elements of A.

norm(A,’fro’) = norm(A(:))

The Moore–Penrose pseudoinverse generalizes and extends the usual matrix
inverse. The pseudoinverse is denoted by a dagger superscript,

Z = X†,

and computed by the Matlab pinv.

Z = pinv(X)

If X is square and nonsingular, then the pseudoinverse and the inverse are the
same:

X† = X−1.

If X is m by n with m > n and X has full rank, then its pseudoinverse is the matrix
involved in the normal equations:

X† = (XT X)−1XT .

The pseudoinverse has some, but not all, of the properties of the ordinary
inverse. X† is a left inverse because

X†X = (XT X)−1XT X = I

is the n-by-n identity. But X† is not a right inverse because

XX† = X(XT X)−1XT

only has rank n and so cannot be the m-by-m identity.
The pseudoinverse does get as close to a right inverse as possible in the sense

that, out of all the matrices Z that minimize

‖XZ − I‖F ,

Z = X† also minimizes
‖Z‖F .

It turns out that these minimization properties also define a unique pseudoinverse
even if X is rank deficient.

14 Chapter 5. Least Squares

Consider the 1-by-1 case. What is the inverse of a real (or complex) number
x? If x is not zero, then clearly x−1 = 1/x. But if x is zero, x−1 does not exist.
The pseudoinverse takes care of that because, in the scalar case, the unique number
that minimizes both

|xz − 1| and |z|
is

x† =
{

1/x : x 6= 0,
0 : x = 0.

The actual computation of the pseudoinverse involves the singular value de-
composition, which is described in a later chapter. You can edit pinv or type pinv
to see the code.

5.7 Rank Deficiency
If X is rank deficient, or has more columns than rows, the square matrix XT X is
singular and (XT X)−1 does not exist. The formula

β = (XT X)−1XT y

obtained from the normal equations breaks down completely.
In these degenerate situations, the least squares solution to the linear system

Xβ ≈ y

is not unique. A null vector of X is a nonzero solution to

Xη = 0.

Any multiple of any null vector can be added to β without changing how well Xβ
approximates y.

In Matlab, the solution to

Xβ ≈ y

can be computed with either backslash or the pseudoinverse, that is,

beta = X\y

or

beta = pinv(X)*y

In the full rank case, these two solutions are the same, although pinv does con-
siderably more computation to obtain it. But in degenerate situations these two
solutions are not the same.

The solution computed by backslash is called a basic solution. If r is the rank
of X, then at most r of the components of

beta = X\y

5.7. Rank Deficiency 15

are nonzero. Even the requirement of a basic solution does not guarantee unique-
ness. The particular basic computation obtained with backslash is determined by
details of the QR factorization.

The solution computed by pinv is the minimum norm solution. Out of all the
vectors β that minimize ‖Xβ − y‖, the vector

beta = pinv(X)*y

also minimizes ‖β‖. This minimum norm solution is unique.
For example, let

X =

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

and

y =

16
17
18
19
20

 .

The matrix X is rank deficient. The middle column is the average of the first and
last columns. The vector

η =

1
−2
1

is a null vector.
The statement

beta = X\y

produces a warning,

Warning: Rank deficient, rank = 2 tol = 2.4701e-014.

and the solution

beta =
-7.5000

0
7.8333

As promised, this solution is basic; it has only two nonzero components. However,
the vectors

beta =
0

-15.0000
15.3333

16 Chapter 5. Least Squares

and

beta =
-15.3333
15.6667

0

are also basic solutions.
The statement

beta = pinv(X)*y

produces the solution

beta =
-7.5556
0.1111
7.7778

without giving a warning about rank deficiency. The norm of the pseudoinverse
solution

norm(pinv(X)*y) = 10.8440

is slightly less than the norm of the backslash solution

norm(X\y) = 10.8449

Out of all the vectors β that minimize ‖Xβ − y‖, the pseudoinverse has found the
shortest. Notice that the difference between the two solutions,

X\y - pinv(X)*y =
0.0556

-0.1111
0.0556

is a multiple of the null vector η.
If handled with care, rank deficient least squares problems can be solved in

a satisfactory manner. Problems that are nearly, but not exactly, rank deficient
are more difficult to handle. The situation is similar to square linear systems that
are badly conditioned, but not exactly singular. Such problems are not well posed
numerically. Small changes in the data can lead to large changes in the computed
solution. The algorithms used by both backslash and pseudoinverse involve deci-
sions about linear independence and rank. These decisions use somewhat arbitrary
tolerances and are particularly susceptible to both errors in the data and roundoff
errors in the computation.

Which is “better,” backslash or pseudoinverse? In some situations, the under-
lying criteria of basic solution or minimum norm solution may be relevant. But most
problem formulations, particularly those involving curve fitting, do not include such
subtle distinctions. The important fact to remember is that the computed solutions
are not unique and are not well determined by the data.

5.8. Separable Least Squares 17

5.8 Separable Least Squares
Matlab provides several functions for solving nonlinear least squares problems.
Older versions of Matlab have one general-purpose, multidimensional, nonlinear
minimizer, fmins. In more recent versions of Matlab, fmins has been updated
and renamed fminsearch. The Optimization Toolbox provides additional capabil-
ities, including a minimizer for problems with constraints, fmincon; a minimizer
for unconstrained problems, fminunc; and two functions intended specifically for
nonlinear least squares, lsqnonlin and lsqcurvefit. The Curve Fitting Toolbox
provides a GUI to facilitate the solution of many different linear and nonlinear
fitting problems.

In this introduction, we focus on the use of fminsearch. This function uses a
direct search technique known as the Nelder–Meade algorithm. It does not attempt
to approximate any gradients or other partial derivatives. It is quite effective on
small problems involving only a few variables. Larger problems with more vari-
ables are better handled by the functions in the Optimization and Curve Fitting
Toolboxes.

Separable least squares curve-fitting problems involve both linear and nonlin-
ear parameters. We could ignore the linear portion and use fminsearch to search
for all the parameters. But if we take advantage of the separable structure, we ob-
tain a more efficient, robust technique. With this approach, fminsearch is used to
search for values of the nonlinear parameters that minimize the norm of the resid-
ual. At each step of the search process, the backslash operator is used to compute
values of the linear parameters.

Two blocks of Matlab code are required. One block can be a function,
a script, or a few lines typed directly in the Command Window. It sets up the
problem, establishes starting values for the nonlinear parameters, calls fminsearch,
processes the results, and usually produces a plot. The second block is the objective
function that is called by fminsearch. This function is given a vector of values of
the nonlinear parameters, alpha. It should compute the design matrix X for these
parameters, use backslash with X and the observations to compute values of the
linear parameters beta, and return the resulting residual norm.

Let’s illustrate all this with expfitdemo, which involves observations of ra-
dioactive decay. The task is to model the decay by a sum of two exponential terms
with unknown rates λj :

y ≈ β1e
−λ1t + β2e

−λ2t.

Consequently, in this example, there are two linear parameters and two nonlinear
parameters. The demo plots the various fits that are generated during the nonlinear
minimization process. Figure 5.4 shows plots of both the data and the final fit.

The main function begins by specifying 21 observations, t and y.

function expfitdemo
t = (0:.1:2)’;
y = [5.8955 3.5639 2.5173 1.9790 1.8990 1.3938 1.1359 ...

1.0096 1.0343 0.8435 0.6856 0.6100 0.5392 0.3946 ...
0.3903 0.5474 0.3459 0.1370 0.2211 0.1704 0.2636]’;

18 Chapter 5. Least Squares

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

 1.4003 10.5865

Figure 5.4. expfitdemo.

The initial plot uses o’s for the observations, creates an all-zero placeholder
for what is going to become the evolving fit, and creates a title that will show the
values of lambda. The variable h holds the handles for these three graphics objects.

clf
shg
set(gcf,’doublebuffer’,’on’)
h = plot(t,y,’o’,t,0*t,’-’);
h(3) = title(’’);
axis([0 2 0 6.5])

The vector lambda0 specifies initial values for the nonlinear parameters. In this
example, almost any choice of initial values leads to convergence, but in other
situations, particularly with more nonlinear parameters, the choice of initial values
can be much more important. The call to fminsearch does most of the work.
The observations t and y, as well as the graphics handle h, are passed as extra
parameters.

lambda0 = [3 6]’;
lambda = fminsearch(@expfitfun,lambda0,[],t,y,h)
set(h(2),’color’,’black’)

The objective function is named expfitfun. It can handle n exponential
basis functions; we will be using n = 2. The first input parameter is a vector

5.9. Further Reading 19

provided by fminsearch that contains values of the n decay rates, λj . The other
parameters are vectors containing the independent and dependent variables, t and y,
and the graphics handle. The function computes the design matrix, uses backslash
to compute β, evaluates the resulting model, and returns the norm of the residual.

function res = expfitfun(lambda,t,y,h)
m = length(t);
n = length(lambda);
X = zeros(m,n);
for j = 1:n

X(:,j) = exp(-lambda(j)*t);
end
beta = X\y;
z = X*beta;
res = norm(z-y);

The objective function also updates the plot of the fit and the title and pauses long
enough for us to see the progress of the computation.

set(h(2),’ydata’,z);
set(h(3),’string’,sprintf(’%8.4f %8.4f’,lambda))
pause(.1)

5.9 Further Reading
The reference books on matrix computation [4, 5, 6, 7, 8, 9] discuss least squares.
An additional reference is Björck [1].

Exercises
5.1. Let X be the n-by-n matrix generated by

[I,J] = ndgrid(1:n);
X = min(I,J) + 2*eye(n,n) - 2;

(a) How does the condition number of X grow with n?
(b) Which, if any, of the triangular factorizations chol(X), lu(X), and qr(X)
reveal the poor conditioning?

5.2. In censusgui, change the 1950 population from 150.697 million to 50.697
million. This produces an extreme outlier in the data. Which models are the
most affected by this outlier? Which models are the least affected?

5.3. If censusgui is used to fit the U.S. Census data with a polynomial of degree
eight and the fit is extrapolated beyond the year 2000, the predicted popula-
tion actually becomes zero before the year 2020. On what year, month, and
day does that fateful event occur?

20 Chapter 5. Least Squares

5.4. Here are some details that we skipped over in our discussion of Householder
reflections. At the same time, we extend the description to include complex
matrices. The notation uT for transpose is replaced with the Matlab nota-
tion u′ for complex conjugate transpose. Let x be any nonzero m-by-1 vector
and let ek denote the kth unit vector, that is, the kth column of the m-by-m
identity matrix. The sign of a complex number z = reiθ is

sign(z) = z/|z| = eiθ.

Define σ by
σ = sign(xk)‖x‖.

Let
u = x + σek.

In other words, u is obtained from x by adding σ to its kth component.
(a) The definition of ρ uses σ̄, the complex conjugate of σ:

ρ = 1/(σ̄uk).

Show that
ρ = 2/‖u‖2.

(b) The Householder reflection generated by the vector x is

H = I − ρuu′.

Show that
H ′ = H

and that
H ′H = I.

(c) Show that all the components of Hx are zero, except for the kth. In other
words, show that

Hx = −σek.

(d) For any vector y, let
τ = ρu′y.

Show that
Hy = y − τu.

5.5. Let

x =

9
2
6

 .

(a) Find the Householder reflection H that transforms x into

Hx =

−11
0
0

 .

Exercises 21

(b) Find nonzero vectors u and v that satisfy

Hu = −u,

Hv = v.

5.6. Let

X =

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

 .

(a) Verify that X is rank deficient.

Consider three choices for the pseudoinverse of X.

Z = pinv(X) % The actual pseudoinverse
B = X\eye(5,5) % Backslash
S = eye(3,3)/X % Slash

(b) Compare the values of

‖Z‖F , ‖B‖F , and ‖S‖F ;
‖XZ − I‖F , ‖XB − I‖F , and ‖XS − I‖F ;
‖ZX − I‖F , ‖BX − I‖F , and ‖SX − I‖F .

Verify that the values obtained with Z are less than or equal to the values
obtained with the other two choices. Actually minimizing these quantities is
one way of characterizing the pseudoinverse.
(c) Verify that Z satisfies all four of the following conditions, and that B and
S fail to satisfy at least one of the conditions. These conditions are known as
the Moore–Penrose equations and are another way to characterize a unique
pseudoinverse.

XZ is symmetric.
ZX is symmetric.
XZX = X.

ZXZ = Z.

5.7. Generate 11 data points, tk = (k − 1)/10, yk = erf(tk), k = 1, . . . , 11.
(a) Fit the data in a least squares sense with polynomials of degrees 1 through
10. Compare the fitted polynomial with erf(t) for values of t between the data
points. How does the maximum error depend on the polynomial degree?
(b) Because erf(t) is an odd function of t, that is, erf(x) = −erf(−x), it is
reasonable to fit the data by a linear combination of odd powers of t:

erf(t) ≈ c1t + c2t
3 + · · ·+ cnt2n−1.

Again, see how the error between data points depends on n.

22 Chapter 5. Least Squares

(c) Polynomials are not particularly good approximants for erf(t) because
they are unbounded for large t, whereas erf(t) approaches 1 for large t. So,
using the same data points, fit a model of the form

erf(t) ≈ c1 + e−t2(c2 + c3z + c4z
2 + c5z

3),

where z = 1/(1 + t). How does the error between the data points compare
with the polynomial models?

5.8. Here are 25 observations, yk, taken at equally spaced values of t.

t = 1:25
y = [5.0291 6.5099 5.3666 4.1272 4.2948

6.1261 12.5140 10.0502 9.1614 7.5677
7.2920 10.0357 11.0708 13.4045 12.8415

11.9666 11.0765 11.7774 14.5701 17.0440
17.0398 15.9069 15.4850 15.5112 17.6572]

y = y(:)’;

(a) Fit the data with a straight line, y(t) = β1 + β2t, and plot the residuals,
y(tk)− yk. You should observe that one of the data points has a much larger
residual than the others. This is probably an outlier.
(b) Discard the outlier, and fit the data again by a straight line. Plot the
residuals again. Do you see any pattern in the residuals?
(c) Fit the data, with the outlier excluded, by a model of the form

y(t) = β1 + β2t + β3 sin t.

(d) Evaluate the third fit on a finer grid over the interval [0, 26]. Plot the
fitted curve, using line style ’-’, together with the data, using line style ’o’.
Include the outlier, using a different marker, ’*’.

5.9. Statistical Reference Datasets. NIST, the National Institute of Standards and
Technology, is the branch of the U.S. Department of Commerce responsible
for setting national and international standards. NIST maintains Statistical
Reference Datasets, StRD, for use in testing and certifying statistical soft-
ware. The home page on the Web is [3]. Data sets for linear least squares are
under “Linear Regression.” This exercise involves two of the NIST reference
data sets:

• Norris: linear polynomial for calibration of ozone monitors;
• Pontius: quadratic polynomial for calibration of load cells.

For each of these data sets, follow the Web links labeled

• Data File (ASCII Format),
• Certified Values, and
• Graphics.

Download each ASCII file. Extract the observations. Compute the polyno-
mial coefficients. Compare the coefficients with the certified values. Make
plots similar to the NIST plots of both the fit and the residuals.

Exercises 23

5.10. Filip data set. One of the Statistical Reference Datasets from the NIST is the
“Filip” data set. The data consist of several dozen observations of a variable
y at different values of x. The task is to model y by a polynomial of degree
10 in x.
This data set is controversial. A search of the Web for “filip strd” will find
several dozen postings, including the original page at NIST [3]. Some math-
ematical and statistical packages are able to reproduce the polynomial coef-
ficients that NIST has decreed to be the “certified values.” Other packages
give warning or error messages that the problem is too badly conditioned to
solve. A few packages give different coefficients without warning. The Web
offers several opinions about whether or not this is a reasonable problem.
Let’s see what Matlab does with it.
The data set is available from the NIST Web site. There is one line for each
data point. The data are given with the first number on the line a value
of y, and the second number the corresponding x. The x-values are not
monotonically ordered, but it is not necessary to sort them. Let n be the
number of data points and p = 11 the number of polynomial coefficients.
(a) As your first experiment, load the data into Matlab, plot it with ‘.’
as the line type, and then invoke the Basic Fitting tool available under the
Tools menu on the figure window. Select the 10th-degree polynomial fit.
You will be warned that the polynomial is badly conditioned, but ignore that
for now. How do the computed coefficients compare with the certified values
on the NIST Web page? How does the plotted fit compare with the graphic
on the NIST Web page? The basic fitting tool also displays the norm of the
residuals, ‖r‖. Compare this with the NIST quantity “Residual Standard
Deviation,” which is

‖r‖√
n− p

.

(b) Examine this data set more carefully by using six different methods to
compute the polynomial fit. Explain all the warning messages you receive
during these computations.
• Polyfit: Use polyfit(x,y,10).

• Backslash: Use X\y, where X is the n-by-p truncated Vandermonde
matrix with elements

Xi,j = xp−j
i , i = 1, . . . , n, j = 1, . . . , p.

• Pseudoinverse: Use pinv(X)*y.

• Normal equations: Use inv(X’*X)*X’*y.

• Centering: Let µ = mean(x), σ = std(x), t = (x− µ)/σ.
Use polyfit(t,y,10).

• Certified coefficients: Obtain the coefficients from the NIST Web page.

(c) What are the norms of the residuals for the fits computed by the six
different methods?

24 Chapter 5. Least Squares

(d) Which one of the six methods gives a very poor fit? (Perhaps the packages
that are criticized on the Web for reporting bad results are using this method.)
(e) Plot the five good fits. Use dots, ’.’, at the data values and curves
obtained by evaluating the polynomials at a few hundred points over the
range of the x’s. The plot should look like Figure 5.5. There are five different
plots, but only two visually distinct ones. Which methods produce which
plots?
(f) Why do polyfit and backslash give different results?

−9 −8 −7 −6 −5 −4 −3
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
NIST Filip data set

Data
Rank 11
Rank 10

Figure 5.5. NIST Filip standard reference data set.

5.11. Longley data set. The Longley data set of labor statistics was one of the first
used to test the accuracy of least squares computations. You don’t need to
go to the NIST Web site to do this problem, but if you are interested in the
background, you should see the Longley page at [3]. The data set is available
in NCM in the file longley.dat. You can bring the data into Matlab with

load longley.dat
y = longley(:,1);
X = longley(:,2:7);

There are 16 observations of 7 variables, gathered over the years 1947 to 1962.
The variable y and the 6 variables making up the columns of the data matrix
X are

y = Total Derived Employment,
x1 = GNP Implicit Price Deflater,

Exercises 25

x2 = Gross National Product,

x3 = Unemployment,

x4 = Size of Armed Forces,

x5 = Noninstitutional Population Age 14 and Over,

x6 = Year.

The objective is to predict y by a linear combination of a constant and the
six x’s:

y ≈ β0 +
6∑
1

βkxk.

(a) Use the Matlab backslash operator to compute β0, β1, . . . , β6. This
involves augmenting X with a column of all 1’s, corresponding to the constant
term.
(b) Compare your β’s with the certified values [3].
(c) Use errorbar to plot y with error bars whose magnitude is the difference
between y and the least squares fit.
(d) Use corrcoef to compute the correlation coefficients for X without the
column of 1’s. Which variables are highly correlated?
(e) Normalize the vector y so that its mean is zero and its standard deviation
is one. You can do this with

y = y - mean(y);
y = y/std(y)

Do the same thing to the columns of X. Now plot all seven normalized vari-
ables on the same axis. Include a legend.

5.12. Planetary orbit [2]. The expression z = ax2+bxy+cy2+dx+ey+f is known
as a quadratic form. The set of points (x, y), where z = 0, is a conic section.
It can be an ellipse, a parabola, or a hyperbola, depending on the sign of
the discriminant b2 − 4ac. Circles and lines are special cases. The equation
z = 0 can be normalized by dividing the quadratic form by any nonzero
coefficient. For example, if f 6= 0, we can divide all the other coefficients by
f and obtain a quadratic form with the constant term equal to one. You can
use the Matlab meshgrid and contour functions to plot conic sections. Use
meshgrid to create arrays X and Y. Evaluate the quadratic form to produce
Z. Then use contour to plot the set of points where Z is zero.

[X,Y] = meshgrid(xmin:deltax:xmax,ymin:deltay:ymax);
Z = a*X.^2 + b*X.*Y + c*Y.^2 + d*X + e*Y + f;
contour(X,Y,Z,[0 0])

A planet follows an elliptical orbit. Here are ten observations of its position
in the (x, y) plane:

x = [1.02 .95 .87 .77 .67 .56 .44 .30 .16 .01]’;
y = [0.39 .32 .27 .22 .18 .15 .13 .12 .13 .15]’;

26 Chapter 5. Least Squares

(a) Determine the coefficients in the quadratic form that fits these data in
the least squares sense by setting one of the coefficients equal to one and
solving a 10-by-5 overdetermined system of linear equations for the other
five coefficients. Plot the orbit with x on the x-axis and y on the y-axis.
Superimpose the ten data points on the plot.
(b) This least squares problem is nearly rank deficient. To see what effect this
has on the solution, perturb the data slightly by adding to each coordinate
of each data point a random number uniformly distributed in the interval
[−.0005, .0005]. Compute the new coefficients resulting from the perturbed
data. Plot the new orbit on the same plot with the old orbit. Comment on
your comparison of the sets of coefficients and the orbits.

Bibliography

[1] A. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadel-
phia, 1996.

[2] M. T. Heath, Scientific Computing: An Introductory Survey, McGraw–Hill,
New York, 1997.

[3] National Institute of Standards and Technology, Statistical Reference
Datasets.
http://www.itl.nist.gov/div898/strd
http://www.itl.nist.gov/div898/strd/lls/lls.shtml
http://www.itl.nist.gov/div898/strd/lls/data/Longley.shtml

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, Third Edition, SIAM, Philadelphia,
1999.
http://www.netlib.org/lapack

[5] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, Third Edition,
The Johns Hopkins University Press, Baltimore, 1996.

[7] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New
York, 1973.

[8] G. W. Stewart, Matrix Algorithms: Basic Decompositions, SIAM, Philadel-
phia, 1998.

[9] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

27

