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1 (a) Suppose thdt: R* — Ris C'. Letp be a descent direction atand
assume thaf is bounded below along the half-life + ap|o« > 0}.
Show that if0 < ¢; < ¢, < 1there exists at least one interval of search
lengths satisfying the Wolfe conditions Eqgs. 9a and 9b inexujix B. 8

(b) A simple Backtracking Line Search algorithm (AlgoritHipis given

in Appendix C. Prove that, provided at least one iteratikes$gplace

and forp sufficiently close td (i.e. provided the backtracking is suffi-

ciently slow) the algorithm will produce an intervbk [«4, «;] such

that the Wolfe conditions Eqgs. 9a and 9b are satisfied forxal 1

with ¢; = ¢ and for some, > c;. 12
(c) Alg. 1 assumes but does not check that the initiailue (x) violates

the first Wolfe condition. Write a short piece of Matlab or pde-code

that computes a suitable value for 5

2 The Trust-Region sub-problem can be stated as:

. 1 .
minm(p) =p'g+ EpTBp subject to|p|| < A (1)

peR™

whereg is the gradient of the objective functidrat the current point and
is either the Hessian dfat the current point or an approximation to it.

(&) The Dogleg Trust Region method is described in AppendixXDEaw
a sketch to illustrate the method. 2
(b) If B is positive definite then provene of the following: 10
(i) |lp(7)] is anincreasing function of
(i) m(p(t)) is a decreasing function af.
(c) What is the significance of these two results? 2
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(d) Derive the solution of the Two-Dimensional SubspaceiMigation
(TDSM) problem wherB is positive definite.

(i) Write p asp = g+ g; whereg; = g+vyB~'g andy is chosen

so thatg'g; = 0. 2
(i) Show that the equatioffip||* = A? is an ellipse in thex—{ plane. 1
(i) Parameterisex & (3 appropriately. 1
(iv) Expressm(p) as a quadratic ix & f3. 1
(v) Finally, use the parameterised form®fand 3 to expressam(p)

in terms of a single anglé, say, wher® < 0 < 2. 3
(vi) Show that the equation to be solved can be reduced to rahfou

order polynomial in either sié or coso. 2

(e) Can you say whether one of the two methods (Dogleg and TDSM
necessarily better than the other? Why? 1

3 The Fletcher-Reeves (FR) version of the non-linear catpigradient al-
gorithm (Alg. 2) is given in Appendix F.

(a) Suppose that the algorithm is implemented with a stegthem, that
satisfies the strong Wolfe conditions with< ¢, < % and that the
norm of the gradient is bounded above. Assume Zoutendifkéofem
(Theorem 1 in Appendix E) and the result that

T 2 _
o] < Pide o 22 ! forallk=0,1,....
T—c2 ™ [lgll 1—c

and prove that the FR cgm has the global convergence properiy.
that 23
Iiltn inf ||gk|| = 0.

(b) Explain the significance of the result. 2

4 Consider thenver se BFGS formulaH, . = Hk—'%fﬁiiih‘+ykyky{. Here
Sk = Xkl — Xio Yk = ki1 — gk Gk = VI(x) andyy, = sfj You are
asked to prove that liminfgy| = 0.

The proof is broken into steps, only some of which you are asked to
check.

(a) Defineﬁk = f; sz(xk + TO(kpk)dT. Show thaﬂqksk = Yk (Use the
Chain Rule). 2
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(b) Assume thain||z|? < zTVZf( )z < M||z||? for all x,z € R™ and
T
definemy = f%s:, My = ‘ljk”k You may assume thatm, > m and

My < M for aII k using the definitions o, andyy. 0
(c) Show that tracel,.; = traceH; — ”sHtfks” + ”yk” and that deH,.; =
detHk< YLsK ) (You may assume that detI +xy +w') = (14
yx)(1+v u) — (x™v)(y™u) for any vectors, y, u andv in R™) 6
(d) You may assume that the definition co8, = % is equivalent
to the standard definition c6s = __PRo 0
[P llll gl
s{Hksk

(e) You may assume that settingqy, = allows the results from (c)

[[sicll?

to be amended to traéd.,.; = traceH, — cogz—kek + My anddeH,; =
() For anyn x n matrix B, definel(B) = tracdB) — In detB and show
that if B is positive definite therd)(B) > 0. 2

(g) Assume Zoutendijk’s Theorem (Theorem 1 in Appendix E) prove
that for any starting point,, if the objective functiorf is C?> and the
assumptions and conclusions of the preceding parts of tkstign
hold then the sequende,} generated by thenver se BFGS formula
satisfies liminf|gy|| = 0. 15

5 Consider the general equality-constrained problem asetefn App. H.

(@) Show that the penalty functid#i(x) defined in (16) in App. G has the
property that the (unconstrained) minimaof F* converge to a local

minimumx*. 13
(b) Prove the KKT first-order necessary conditions (19a) @kfib) in
App. J for anequality-constrained problem . 12
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6 Consider the equality-constrained Quadratic PrograrR.JQ.

ming(x) = %XTQX +x'd, (2a)
subjectto a/x =b;, i=1,...,k (2b)

(a) Let A be the matrix s.t. the vectofs,}ics are the columns oAT'.
Writing the set ofk equality constraints (2b) as the matrix equation
Ax — b = 0, show that ifx* is a local minimum then the KKT condi-
tions (Appendix J) require that there must be a veatoof Lagrange

multipliers such that the following system of equationsatsied: 4
Q AT [x*] [-4d
[A O |-A] |Db (3)
(b) If we writex* = xo + p, wherex, is any estimate of the solution and
p the required step to the solution, show that (3) can be rdemras: 2
Q ATl [-p] _[9
{A O A | |r (4)

where the residual = Axy — b, g = Qx, + d (the gradient ofj(x,))
andp = x* — xo.

(c) Show that this block matrix equation can be reduced t@tbblem of

solving
(AQV\T) A = <AQ‘ g— r) . (5)
for A* and then solving
—Qp+ATN =g (6)

for p. 3
(Seethefollowing page for part (d) of thisquestion.)
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(d) Solve thd nequality-constrained QP:

min f(x) subject toAx > b, (7)
xER2
. T T 5 3 1 .
with f(x) = 3x'Qx + d'x whereQ = 3 5 andd = ) with
3 2 1 , .
A= 1 -3 andb = o| using the following steps.
(i) Find xy, theunconstrained minimum off(x), ( Vf(xy) = 0). 3
(i) Confirm thatxy is infeasible. 2

(i) Check thatx, = % ﬁ is the vertex common to the two con-
straints — the intersection point of the two lines. (A rougktsh

of the two lines is useful in the following.) 1
(iv) Given
1 [68 —6
“1aATyv-1 _
(AQ AT 121 [—6 29}
119 1
-1 _
AQ _16[14 —18} and

%0 =71 |3
ITT47 136
use the procedure in part (c) of this question to solvé=iingality-
constrained QP
min f(x) subject toAx = b, (8)
xER2
as both constraints are binding@t Note that = 0 atx,. Do not
complete the arithmetic necessary to calcukdtgust check that
its first component is positive and its second is negativerdis
no need to calculatp. 4
(v) Discard the constraint corresponding to the negativétiptier
(updateA andb) and resolve foiA. Confirm that the single La-

grange multiplie\ is positive. You may take 4
29
AQTAT =2
Q 16

N 1
(vi) Now solve forp asin Eg. 6 in part (c) of this question. (Just set up

the matrix products, do not perform the arithmetic). How lgou
you use the vectgs to compute the solution? 2
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Appendix of Results
A The Wolfe conditions for the step lengthin a line search require that
fx + apy) < f(xi) + cropi’ g(xi), (8a)
P g(xk + api) > c2pi’ g(xi) (8b)

whereg(x) = Vf(x) and0 < ¢; < ¢; < 1. Thestrong Wolfe conditions
replace (8b) by
P’ g(xk + api)l < calpi’ g(xi)l- 9)

B In terms of a “line” functiond () = f(x + ap); the Wolfe conditions for the
step lengthx in a line search require that

$lo) < $(0) + cradp’(0), (9a)
¢’ (o) > c2¢'(0) (9b)
where0 < ¢; < ¢; < 1. Thestrong Wolfe conditions replace (9b) by
b’ ()] < cald’(0)]. (10)
C Algorithm 1 (Backtracking Line Search)
begin
Choosex > 0 andp,c € (0, 1)
o=
while ¢(x) > $(0) + cad’(0) do
o= px
end
o = X
end

D The Trust Region Method is based on the problem:

prgﬂi{{q m(p)=fo+g'p+ %pTBp, such that|p|| < A, (11)
wheref, is a fixed scalarg a fixed vector irR™, B a fixedn x n matrix andA

a fixed positive scalar. The “dogleg” method finds an apprexésolution to
(11) by replacing the (unknown) curved trajectory fofA) with a path con-
sisting of two line segments. The first line segment runs filoestarting point
to the unconstrained minimiser along the steepest destestidn defined by

u g'g

P = gy

g (12)
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while the second line segment runs frg to p® = —B~'g. We can define
the trajectory as a pafh(t) parameterised by as follows:
N Tl 0<t<1
fr) =< P> e o ) (13)
pU+ (t—1)(p? —pY), T<T<2,

E Theorem 1 (Zoutendijk) Consider any iteration of the form, .; = xx +
o pr, Wherepy is a descent direction andy satisfies the Wolfe conditions
Egs. 8a and 8b in Appendix A above. Supposethgbounded below ifR™
and thatf is C' in an open sef\V' containing the level sef = {x : f(x) <
f(x0)}, wherex, is the starting point. Also assume thgix), the gradient of,
is Lipschitz continuous ai, i.e. there exists a constahtsuch that

lg(x) —g(x¥)|| < L|x—x]|, forallx,x e N. (14)

Then
> cos 0 [lgxi)* < oo (15)

k>0

where6y is the angle betweep, and the steepest descent directiog(xy ).

F Algorithm 2 (FR-CGM)

begin
Givenx,.
set go — Vfo,'po — —go,k — 0;
while gy # 0 do
oy «— Result of line search along;
Xk+1 ¢ Xk + X Py;
Jikt1 ka+1z
-l
Prtt — —gk1 + B P
k—k+1;
end (while)
end

G Letx* be a local minimum of the equality-constrained optimisafwoblem
defined in App. H . For each positive intederdefine gpenalty function

P = 100 + S el + 5 = x| (16)

wherex > 0 is arbitrary.
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H The general equality constrained optinisation problem is

min f(x) subjectto ci(x) =0,i€ & (17)

xERM

| The general inequality constrained optinisation probism

minf(x) subjecttod &) =0 TE€E (18)
XERM cilx) >0 1eZ

J The first-order KKT necessary conditions for a paihtvith optimal multipli-
ersA* to be a local solution of an inequality-constrained mingmien problem
are as follows: Suppose that is a local solution of a general constrained
optimisation (as in App. I) problem and that the LICQ holdsxat(the ac-
tive constraint gradients are linearly independant). Tiieme is a Lagrange
multiplier vectorA*, with componenta\f,i € £ U Z, such that the following
conditions are satisfied at*, A*)

V L(x*,A*) =0, (19a)
ci(x*) =0, forall ie€ég, (19b)
ci(x*) >0, forall ieZ, (19¢)

A >0, forall ieZ, (19d)
Aci(x")=0, forall iefUZ (19e)

K The Second-Order necessary conditions for a paimtith optimal multipliers
A* to be alocal solution of an equality-constrained minim@aproblem are as
follows: Suppose that* is a local solution of an equality-constrained problem
as defined in App. H and that the LICQ (see App. J) constraialifigation is
satisfied. Lei* be a Lagrange multiplier vector such that the first-order TKK
necessary conditions in App. J are satisfied,

Thenw'V,.L(x*, A*)w > 0, for all vectorsw such thatw L Vc;(x*), for
eachi € £.



