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1 (a) Suppose thatf : Rn → R isC1. Let p be a descent direction atx and
assume thatf is bounded below along the half-line{x + αp|α > 0}.
Show that if0 < c1 < c2 < 1 there exists at least one interval of search
lengths satisfying the Wolfe conditions Eqs. 9a and 9b in Appendix B. 8

(b) A simple Backtracking Line Search algorithm (Algorithm1) is given
in Appendix C. Prove that, provided at least one iteration takes place
and forρ sufficiently close to1 (i.e. provided the backtracking is suffi-
ciently slow) the algorithm will produce an intervalI = [α1, α2] such
that the Wolfe conditions Eqs. 9a and 9b are satisfied for allα ∈ I

with c1 = c and for somec2 > c1. 12

(c) Alg. 1 assumes but does not check that the initialα-value (̄α) violates
the first Wolfe condition. Write a short piece of Matlab or pseudo-code
that computes a suitable value forᾱ. 5

2 The Trust-Region sub-problem can be stated as:

min
p∈Rn

m(p) ≡ pTg+
1

2
pTBp subject to‖p‖ ≤ ∆ (1)

whereg is the gradient of the objective functionf at the current point andB
is either the Hessian off at the current point or an approximation to it.

(a) The Dogleg Trust Region method is described in Appendix D. Draw
a sketch to illustrate the method. 2

(b) If B is positive definite then proveone of the following: 10

(i) ‖p̃(τ)‖ is an increasing function ofτ

(ii) m(p̃(τ)) is a decreasing function ofτ .

(c) What is the significance of these two results? 2

1
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(d) Derive the solution of the Two-Dimensional Subspace Minimisation
(TDSM) problem whenB is positive definite.

(i) Write p asp = αg+βg1 whereg1 = g+γB−1g andγ is chosen
so thatgTg1 = 0. 2

(ii) Show that the equation‖p‖2 = ∆2 is an ellipse in theα–β plane. 1

(iii) Parameteriseα & β appropriately. 1

(iv) Expressm(p) as a quadratic inα & β. 1

(v) Finally, use the parameterised form ofα andβ to expressm(p)

in terms of a single angle;θ, say, where0 ≤ θ ≤ 2π. 3

(vi) Show that the equation to be solved can be reduced to a fourth-
order polynomial in either sinθ or cosθ. 2

(e) Can you say whether one of the two methods (Dogleg and TDSM) is
necessarily better than the other? Why? 1

3 The Fletcher-Reeves (FR) version of the non-linear conjugate gradient al-
gorithm (Alg. 2) is given in Appendix F.

(a) Suppose that the algorithm is implemented with a step lengthαk that
satisfies the strong Wolfe conditions with0 < c2 <

1
2

and that the
norm of the gradient is bounded above. Assume Zoutendijk’s Theorem
(Theorem 1 in Appendix E) and the result that

−
1

1− c2
≤
pTkgk

‖gk‖2
≤
2c2 − 1

1− c2
, for all k = 0, 1, . . . .

and prove that the FR cgm has the global convergence property— i.e.
that 23

lim inf
k→∞

‖gk‖ = 0.

(b) Explain the significance of the result. 2

4 Consider theinverse BFGS formulaHk+1 = Hk−
Hksks

T

k
Hk

sT
k
Hksk

+γkyky
T
k. Here

sk = xk+1 − xk, yk = gk+1 − gk, gk = ∇f(xk) andγk = 1
sT
k
yk

. You are

asked to prove that lim inf‖gk‖ = 0.

The proof is broken into steps, only some of which you are asked to
check.

(a) DefineH̄k =
∫1
0
∇2f(xk + ταkpk)dτ. Show thatH̄ksk = yk (use the

Chain Rule). 2

2
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(b) Assume thatm‖z‖2 ≤ zT∇2f(x)z ≤ M‖z‖2 for all x, z ∈ R
n and

definemk =
yT
k
sk

sT
k
sk

, Mk =
yT
k
yk

yT
k
sk

. You may assume thatmk ≥ m and

Mk ≤M for all k using the definitions ofsk andyk. 0

(c) Show that traceHk+1 = traceHk−
‖Hksk‖

2

sT
k
Hksk

+
‖yk‖

2

yT
K
sk

and that detHk+1 =

detHk
(

yT
k
sk

sT
k
Hksk

)

. (You may assume that det(I + xyT + uvT) = (1 +

yTx)(1+ vTu) − (xTv)(yTu) for any vectorsx, y, u andv in R
n) 6

(d) You may assume that the definition cosθk =
sT
k
Hksk

‖sk‖‖Hksk‖
is equivalent

to the standard definition cosθk = −
pT
k
gk

‖pk‖‖gk‖
. 0

(e) You may assume that settingqk =
sT
k
Hksk

‖sk‖2
allows the results from (c)

to be amended to traceHk+1 = traceHk−
qk

cos2 θk
+Mk and detHk+1 =

detHk
(

mk

qk

)

. 0

(f) For anyn× nmatrixB, defineψ(B) = trace(B) − ln detB and show
that ifB is positive definite thenψ(B) > 0. 2

(g) Assume Zoutendijk’s Theorem (Theorem 1 in Appendix E) and prove
that for any starting pointx0, if the objective functionf is C2 and the
assumptions and conclusions of the preceding parts of the question
hold then the sequence{xk} generated by theinverse BFGS formula
satisfies lim inf‖gk‖ = 0. 15

5 Consider the general equality-constrained problem as defined in App. H.

(a) Show that the penalty functionFk(x) defined in (16) in App. G has the
property that the (unconstrained) minimaxk of Fk converge to a local
minimumx∗. 13

(b) Prove the KKT first-order necessary conditions (19a) and(19b) in
App. J for anequality-constrained problem . 12

3
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6 Consider the equality-constrained Quadratic Program (Q.P.):

min
x
q(x) =

1

2
xTQx+ xTd, (2a)

subject to aTi x = bi, i = 1, . . . , k (2b)

(a) LetA be the matrix s.t. the vectors{ai}i∈E are the columns ofAT .
Writing the set ofk equality constraints (2b) as the matrix equation
Ax− b = 0, show that ifx∗ is a local minimum then the KKT condi-
tions (Appendix J) require that there must be a vectorλ∗ of Lagrange
multipliers such that the following system of equations is satisfied: 4

[

Q AT

A 0

] [

x∗

−λ∗

]

=

[

−d

b

]

(3)

(b) If we writex∗ = x0 + p, wherex0 is any estimate of the solution and
p the required step to the solution, show that (3) can be re-written as: 2

[

Q AT

A 0

] [

−p

λ∗

]

=

[

g

r

]

(4)

where the residualr = Ax0 − b, g = Qx0 + d (the gradient ofq(x0))
andp = x∗ − x0.

(c) Show that this block matrix equation can be reduced to theproblem of
solving

(

AQ−1AT
)

λ∗ =

(

AQ−1g− r

)

. (5)

for λ∗ and then solving

−Qp+ATλ∗ = g (6)

for p. 3

(See the following page for part (d) of this question.)

4
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(d) Solve theInequality-constrained QP:

min
x∈R2

f(x) subject toAx ≥ b, (7)

with f(x) = 1
2
xTQx + dTx whereQ =

[

5 3

3 5

]

andd =

[

1

2

]

with

A =

[

3 2

1 −3

]

andb =

[

1

0

]

using the following steps.

(i) Find xU, theunconstrained minimum off(x), ( ∇f(xU) = 0). 3
(ii) Confirm thatxU is infeasible. 2

(iii) Check thatx0 = 1
11

[

3

1

]

is the vertex common to the two con-

straints — the intersection point of the two lines. (A rough sketch
of the two lines is useful in the following.) 1

(iv) Given

(AQ−1AT)−1 =
1

121

[

68 −6

−6 29

]

AQ−1 =
1

16

[

9 1

14 −18

]

and

g(x0) =
1

11

[

29

36

]

use the procedure in part (c) of this question to solve theEquality-
constrained QP

min
x∈R2

f(x) subject toAx = b, (8)

as both constraints are binding atx0. Note thatr = 0 atx0. Do not
complete the arithmetic necessary to calculateλ∗, just check that
its first component is positive and its second is negative. There is
no need to calculatep. 4

(v) Discard the constraint corresponding to the negative multiplier
(updateA andb) and resolve forλ. Confirm that the single La-
grange multiplierλ is positive. You may take 4

AQ−1AT =
29

16

AQ−1 =
1

16

[

9 1
]

(vi) Now solve forp as in Eq. 6 in part (c) of this question. (Just set up
the matrix products, do not perform the arithmetic). How would
you use the vectorp to compute the solution? 2

5
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Appendix of Results

A The Wolfe conditions for the step lengthα in a line search require that

f(xk + αpk) ≤ f(xk) + c1αpk
Tg(xk), (8a)

pk
Tg(xk + αpk) ≥ c2pk

Tg(xk) (8b)

whereg(x) ≡ ∇f(x) and0 < c1 < c2 < 1. The strong Wolfe conditions
replace (8b) by

|pk
Tg(xk + αpk)| ≤ c2|pk

Tg(xk)|. (9)

B In terms of a “line” functionφ(α) ≡ f(x + αp); the Wolfe conditions for the
step lengthα in a line search require that

φ(α) ≤ φ(0) + c1αφ
′(0), (9a)

φ ′(α) ≥ c2φ
′(0) (9b)

where0 < c1 < c2 < 1. Thestrong Wolfe conditions replace (9b) by

|φ ′(α)| ≤ c2|φ
′(0)|. (10)

C Algorithm 1 (Backtracking Line Search)

begin
Chooseᾱ > 0 andρ, c ∈ (0, 1)

α := ᾱ

while φ(α) ≥ φ(0) + cαφ ′(0) do
α := ρα

end
αk := α

end

D The Trust Region Method is based on the problem:

min
p∈Rn

m(p) ≡ f0 + g
Tp+

1

2
pTBp, such that‖p‖ ≤ ∆, (11)

wheref0 is a fixed scalar,g a fixed vector inRn, B a fixedn×nmatrix and∆
a fixed positive scalar. The “dogleg” method finds an approximate solution to
(11) by replacing the (unknown) curved trajectory forp∗(∆) with a path con-
sisting of two line segments. The first line segment runs fromthe starting point
to the unconstrained minimiser along the steepest descent direction defined by

pU = −
gTg

gTBg
g (12)

6
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while the second line segment runs frompU to pB ≡ −B−1g. We can define
the trajectory as a path̃p(τ) parameterised byτ as follows:

p̃(τ) =

{
τpU, 0 ≤ τ ≤ 1,

pU + (τ− 1)(pB − pU), 1 ≤ τ ≤ 2.
(13)

E Theorem 1 (Zoutendijk) Consider any iteration of the formxk+1 = xk +

αkpk, wherepk is a descent direction andαk satisfies the Wolfe conditions
Eqs. 8a and 8b in Appendix A above. Suppose thatf is bounded below inRn

and thatf is C1 in an open setN containing the level setL ≡ {x : f(x) ≤
f(x0)}, wherex0 is the starting point. Also assume thatg(x), the gradient off,
is Lipschitz continuous onN , i.e. there exists a constantL such that

‖g(x) − g(x̄)‖ ≤ L‖x − x̄‖, for all x, x̄ ∈ N . (14)

Then ∑

k≥0

cos2 θk ‖g(xk)‖
2 <∞, (15)

whereθk is the angle betweenpk and the steepest descent direction−g(xk).

F Algorithm 2 (FR-CGM)

begin
Givenx0.
set g0 ← ∇f0, p0 ← −g0, k← 0;

while gk 6= 0 do
αk ← Result of line search alongpk;
xk+1 ← xk + αkpk;

gk+1 ← ∇fk+1
βFRk+1 ←

‖gk+1‖
2

‖gk‖2
;

pk+1 ← −gk+1 + β
FR
k+1pk;

k← k+ 1;

end (while)
end

G Let x∗ be a local minimum of the equality-constrained optimisation problem
defined in App. H . For each positive integerk, define apenalty function

Fk(x) = f(x) +
k

2
‖c(x)‖2 +

α

2
‖x− x∗‖2, (16)

whereα > 0 is arbitrary.

7
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H The general equality constrained optinisation problem is:

min
x∈Rn

f(x) subject to ci(x) = 0, i ∈ E (17)

I The general inequality constrained optinisation problemis:

min
x∈Rn

f(x) subject to

{
ci(x) = 0 i ∈ E ,

ci(x) ≥ 0 i ∈ I
(18)

J The first-order KKT necessary conditions for a pointx∗ with optimal multipli-
ersλ∗ to be a local solution of an inequality-constrained minimisation problem
are as follows: Suppose thatx∗ is a local solution of a general constrained
optimisation (as in App. I) problem and that the LICQ holds atx∗ (the ac-
tive constraint gradients are linearly independant). Thenthere is a Lagrange
multiplier vectorλ∗, with componentsλ∗i , i ∈ E ∪ I, such that the following
conditions are satisfied at(x∗, λ∗)

∇xL(x
∗, λ∗) = 0, (19a)

ci(x
∗) = 0, for all i ∈ E , (19b)

ci(x
∗) ≥ 0, for all i ∈ I, (19c)

λ∗i ≥ 0, for all i ∈ I, (19d)

λ∗i ci(x
∗) = 0, for all i ∈ E ∪ I (19e)

whereL(x, λ) ≡ f(x) −
∑

i∈E∪I

λici(x).

K The Second-Order necessary conditions for a pointx∗ with optimal multipliers
λ∗ to be a local solution of an equality-constrained minimisation problem are as
follows: Suppose thatx∗ is a local solution of an equality-constrained problem
as defined in App. H and that the LICQ (see App. J) constraint qualification is
satisfied. Letλ∗ be a Lagrange multiplier vector such that the first-order (KKT)
necessary conditions in App. J are satisfied,

ThenwT∇xxL(x∗, λ∗)w ≥ 0, for all vectorsw such thatw ⊥ ∇ci(x∗), for
eachi ∈ E .
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