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(a)

(b)

(©

(d)

Prove the following Lemma: Let V be a finite-dimensional vector

space. Let L = {l;,...,L1,} be a linearly independent set in V and
let S = {s;,...,s,,) be a second subset of V which spans V. Then
n<m.

Hint: Write each of the 1, in L as a linear combination of the spanning
set S and use the fact that a homogeneous linear system ATc = 0 with
more unknowns than equations has non-trivial solutions where A is
the coefficient matrix for expressing the vectors in L in terms of the
vectors in S.

Show that this result leads to a definition for the dimension of a vector
space.

Let S and T be subsets of a vector space V such that S C T.

(i) Prove that if S is linearly dependent then sois T.
(i) Prove that (i) is equivalent to the statement that if T is linearly
independent, so is S.

The Adding/Removing Theorem states that:

Theorem 0.1 Ler S be a non-empty set of vectors in a vector space
V. Then:

(i) if S is a linearly independent set and if v € V is outside span(S)
(i.e. v cannot be expressed as a linear combination of the vectors
in S) then the set S U v is still linearly independent (i.e. adding v
to the list of vectors in S does not affect the linear independence
of S),

(ii) if v € S is a vector that is expressible as a linear combination of
other vectors in S and if S \ v means S with the vector v removed
then S and S \ v span the same space, i.e.

span(S) = span(S \ v).

Use the Adding/Removing Theorem to prove one of the following:

Theorem 0.2 IfV is an n-dimensional vector space and if S is a set
in V with exactly n elements then S is a basis for V if either

(i) S spans 'V

(ii) or S is linearly independent .

(You may assume that all bases for a given vector space have the same
number of elements.)
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2 (a) Show that for any x € R",
@ [Ix[[ < vnlx[2

and
(i) [[x|l2 < [[x]lr.

(b) Given a choice of norms ||-|| on C™ and C", the induced matrix norm
of the m x n matrix A is defined as

A
JA] = sup [Ax]| = sup 12X
Ix|=1 0 |||

(i) Explain carefully why the two conditions

||Ax|| < B, for all unit vectors X,

AXxy = B, for some unit vector X,

imply that |A|| = B.
(i1) Show using the definition of an induced matrix norm and the re-
sults in Q.2(a) that for any m X n matrix A,

1Al < VnfA[L.

(c) Show that for any m x nmatrix A, the eigenvalues of A*A are real
and non-negative.

(d) Using the two conditions in part (a), show that the induced 2—norm
|A||2 of am x nmatrix A can be calculated as the square root of the
largest eigenvalue of A*A:

HA”Z =V Amax(A*A)

(e) Use the result found in part (d) to find the induced 2-norm of the

—1 3
matrix A = 3 4.
1 7

(i) First show that the eigenvalues of A*A are 75 and 10. (Just check
that Ay = 75 and A, = 10 are roots of the characteristic polyno-
mial of A*A.)

(i) Why does this imply that ||A||; = v/75?

Marks
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3 (a) Show that for every m x m complex matrix A we can write: 12
. o 0
A1:UAV—[O B} (1)
where 0 = ||A|, Bisan (m—1) x (n—1) matrix, U = [y, U;] and
V = [xo Vi, the unit vector X, satisfies |Axo| = [|A| and finally
Yo = ﬁ. The matrices U; and V; are chosen so that U and V are

unitary m X mand n x nrespectively.

(The vector and induced matrix 2—norm is used throughout this ques-
tion. You may assume that ||OA|| = ||A|| for any unitary matrix O.)

(b) Using part (a) prove by induction on the size of A that every m X
n complex matrix A has a Singular Value Decomposition (SVD) A =
UXV* where U is m X munitary, V is 1 X nunitary and X is an
m x ndiagonal matrix of singular values. 6

(c) Use the SVD to show that for any m x n matrix A, the singular values
0; (the diagonal elements of 2) may be found by computing the eigen-
values A; of A*A and taking square roots — i.e. 0; = v/A; and that the
unitary n X nmatrix V has the eigenvectors of A*A as its columns. 2

(d) The reduced SVD expresses A as A = O£ V* where U consists of the
first n columns of U and £ the first n rows of Z. Derive the equation
AV = (£ and explain how it may be used to find the reduced matrix

Q. 2

(e) Given the matrix

0 7
A=14 0
0 =5

find areduced SVD of A using any method you wish . (Remember that
the singular values are in non-increasing order: oy > 03 > -+ > 0y,.)

4 Recall that a complex m x mmatrix P is a projection operator if P?> = P.

(a) Show that if A is an eigenvalue of a projection operator P then either
A=0orA=1. 1

(b) Given an m x mcomplex matrix A with m > n, show that A*A is
invertible if and only if A has full rank (remember that a square matrix
is invertible if and only if Ax = 0 implies x = 0.) 6
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(c) Given a linearly independent set of vectors {a;,...,a,}in C™, let A
be the m x n matrix whose j** column is a;. Use the result in (b) to
show that P, the orthogonal projection operator onto the range of A,
is given by the formula

P=A(A*A) A",

(d) Let A be an m x ncomplex matrix with m > nand let b € C™ be
given. For any x € R", define the residual r by r = Ax — b. Show
that the following four conditions are equivalent (show that the first
implies the second, etc.)

r L range(A) (2)
A'r=0 3)
A*Ax = A'b 4)
Pb = Ax (5)

where P € C™*™ is the orthogonal projection operator onto the range
of A found in part (c).

(e) Use the results in (d) to show that the vector x € R™ that minimises
|[Ax — b||5 is just the vector x satisfying Pb = Ax where P is the
projection operator defined in (c) and referred to in (d).

*

5 (a) Forany vector v € C¥, let the matrix H = I — 2P, (where P, =

).

(i) Show with a sketch that the effect on an arbitrary vector x € C*
of left-multiplying x by H is to reflect x in P, the normal to v
in the x—v plane.

AY

(i1) Find the choices of vector v that make Hx, the Householder re-
flection of x, return a multiple of e; where e; € C* is a vector of
zeroes with one in the first position.

(iii)) Which of the two choices found should be used and why?

(b) The following algorithm (Alg. 0.1) takes as its input an arbitrary mxn
complex matrix A. Explain the effect of line 5 and relate it to the
Householder reflection in part (a).

Algorithm 0.1 Householder QR Factorisation

(1) fork=1ton
(2) X = Ak:m,k

Marks

10



MS4105 Linear Algebra 2 Dr. J. Kinsella Autumn 2015 Marks

(3) Vi = x + sign(xq) | x| e

(4) Vi = W/ |[w]|

(5) Ak:m,k:n = Ak:m,k:n - ka (vltAk:m,k:n)
(6) end

(c) The work done in Alg. 0.1 is dominated by the (implicit) inner loop
j=k : n over the columns of the submatrix Ay . in line 5. Show that
the total operation count W for the algorithm is W = 2mn? —2/3n3
to leading order. 9

(Just show that the coefficient of n® in W is —2/3 and that the coeffi-
cient of mn? is 2.)

(@)

For any m X m matrix A, Gauss Elimination without pivoting consists of:

Algorithm 0.2 Gauss Elimination Without Pivoting — in words

(1) fork=Ttom—1

2) Add suitable multiples of row k to the rows beneath

3) to introduce zeroes below the main diagonal in column k.
4) end

(a) Show that each iteration of the above algorithm can be effected by
left-multiplying A by a matrix L, = [ — {;e; where {y is the vector of
multipliers for the k' column of A (the first k entries of £ are 0) and
ey is a vector in C™ with one in the k™ position and zeroes elsewhere.
Give a simple formula for the non-zero entries of .

(b) Show that for each k, L' =1+ fef . 2
(c) Show that the matrix L = L; 'L, ... Ly "isjust [+ bef 4+ -+

lner. 2
(d) Explain briefly why the result in (c) means that L is lower triangular. 1
(e) What special structure does A have after the algorithm has completed? 1

(See over for the rest of Q.6.)
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(f) When partial pivoting is applied, we have

| I | S mezpmfz L LR LI PFA=U

where each P; swaps row j with one of the rows j+1, ..., m (if neces-
sary) to make the absolute value of the “pivot™ Aj; as large as possible.
Defining
I, = PuaPna...P
-1
show that

Lm_1 Pm_1 Lm_zpm_z ce LszL] P] = Lr,n—1 I_T,n_z .o Lél_]/ ﬂ] .

(g) Show that the LU factorisation A = LU (without pivoting) is now re-

placed by PA = LU (with pivoting) where P = TTyand L = L,7'L,~' ... ",.

(h) Finally, show that the matrix L is lower triangular as it was in the no-
pivoting case.

Marks
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