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1 (a) Prove the following Lemma: Let V be a finite-dimensional vector

space. Let L = {l1, . . . , ln} be a linearly independent set in V and

let S = {s1, . . . , sm} be a second subset of V which spans V . Then

n ≤ m. 10

Hint: Write each of the li in L as a linear combination of the spanning

set S and use the fact that a homogeneous linear system ATc = 0 with

more unknowns than equations has non-trivial solutions where A is

the coefficient matrix for expressing the vectors in L in terms of the

vectors in S.

(b) Show that this result leads to a definition for the dimension of a vector

space. 2

(c) Let S and T be subsets of a vector space V such that S ⊆ T .

(i) Prove that if S is linearly dependent then so is T . 2

(ii) Prove that (i) is equivalent to the statement that if T is linearly

independent, so is S. 1

(d) The Adding/Removing Theorem states that:

Theorem 0.1 Let S be a non-empty set of vectors in a vector space

V . Then:

(i) if S is a linearly independent set and if v ∈ V is outside span(S)

(i.e. v cannot be expressed as a linear combination of the vectors

in S) then the set S ∪ v is still linearly independent (i.e. adding v

to the list of vectors in S does not affect the linear independence

of S),

(ii) if v ∈ S is a vector that is expressible as a linear combination of

other vectors in S and if S \ v means S with the vector v removed

then S and S \ v span the same space, i.e.

span(S) = span(S \ v).

Use the Adding/Removing Theorem to prove one of the following: 10

Theorem 0.2 If V is an n-dimensional vector space and if S is a set

in V with exactly n elements then S is a basis for V if either

(i) S spans V

(ii) or S is linearly independent .

(You may assume that all bases for a given vector space have the same

number of elements.)

1
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2 (a) Show that for any x ∈ R
n,

(i) ‖x‖1 ≤
√
n‖x‖2 6

and

(ii) ‖x‖2 ≤ ‖x‖1. 2

(b) Given a choice of norms ‖·‖ on Cm and Cn, the induced matrix norm

of the m× nmatrix A is defined as

‖A‖ ≡ sup
‖x‖=1

‖Ax‖ ≡ sup
x6=0

‖Ax‖
‖x‖

(i) Explain carefully why the two conditions 3

‖Ax‖ ≤ B, for all unit vectors x,

Ax0 = B, for some unit vector x0

imply that ‖A‖ = B.

(ii) Show using the definition of an induced matrix norm and the re-

sults in Q.2(a) that for any m× nmatrix A,

‖A‖1 ≤
√
n‖A‖2.

3

(c) Show that for any m × nmatrix A, the eigenvalues of A∗A are real

and non-negative. 2

(d) Using the two conditions in part (a), show that the induced 2–norm

‖A‖2 of a m× nmatrix A can be calculated as the square root of the

largest eigenvalue of A∗A:

‖A‖2 =
√

λmax(A∗A)

6

(e) Use the result found in part (d) to find the induced 2–norm of the

matrix A =





−1 3

3 −4

1 7



.

(i) First show that the eigenvalues of A∗A are 75 and 10. (Just check

that λ1 = 75 and λ2 = 10 are roots of the characteristic polyno-

mial of A∗A.) 2

(ii) Why does this imply that ‖A‖2 =
√
75? 1

2
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3 (a) Show that for every m× n complex matrix A we can write: 12

A1 ≡ U∗AV =

[

σ 0

0 B

]

(1)

where σ = ‖A‖, B is an (m−1)× (n−1) matrix, U =
[

y0 U1

]

and

V =
[

x0 V1

]

, the unit vector x0 satisfies ‖Ax0‖ = ‖A‖ and finally

y0 = Ax0
‖A‖

. The matrices U1 and V1 are chosen so that U and V are

unitary m×m and n× n respectively.

(The vector and induced matrix 2–norm is used throughout this ques-

tion. You may assume that ‖OA‖ = ‖A‖ for any unitary matrix O.)

(b) Using part (a) prove by induction on the size of A that every m ×
n complex matrix A has a Singular Value Decomposition (SVD) A =

UΣV∗ where U is m × m unitary, V is n × n unitary and Σ is an

m× n diagonal matrix of singular values. 6

(c) Use the SVD to show that for any m×nmatrix A, the singular values

σi (the diagonal elements of Σ) may be found by computing the eigen-

values λi of A∗A and taking square roots — i.e. σi =
√
λi and that the

unitary n× nmatrix V has the eigenvectors of A∗A as its columns. 2

(d) The reduced SVD expresses A as A = ÛΣ̂V∗ where Û consists of the

first n columns of U and Σ̂ the first n rows of Σ. Derive the equation

AV = ÛΣ̂ and explain how it may be used to find the reduced matrix

Û. 2

(e) Given the matrix

A =





0 7

4 0

0 −5





find a reduced SVD of A using any method you wish . (Remember that

the singular values are in non-increasing order: σ1 ≥ σ2 ≥ · · · ≥ σn.)

3

4 Recall that a complex m×mmatrix P is a projection operator if P2 = P.

(a) Show that if λ is an eigenvalue of a projection operator P then either

λ = 0 or λ = 1. 1

(b) Given an m × n complex matrix A with m ≥ n, show that A∗A is

invertible if and only if A has full rank (remember that a square matrix

is invertible if and only if Ax = 0 implies x = 0.) 6

3
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(c) Given a linearly independent set of vectors {a1, . . . , an} in C
m, let A

be the m × nmatrix whose jth column is aj. Use the result in (b) to

show that P, the orthogonal projection operator onto the range of A,

is given by the formula 6

P = A(A∗A)−1A∗.

(d) Let A be an m × n complex matrix with m ≥ n and let b ∈ C
m be

given. For any x ∈ Rn, define the residual r by r ≡ Ax − b. Show

that the following four conditions are equivalent (show that the first

implies the second, etc.) 8

r ⊥ range(A) (2)

A∗r = 0 (3)

A∗Ax = A∗b (4)

Pb = Ax (5)

where P ∈ Cm×m is the orthogonal projection operator onto the range

of A found in part (c).

(e) Use the results in (d) to show that the vector x ∈ Rn that minimises

‖Ax − b‖22 is just the vector x satisfying Pb = Ax where P is the

projection operator defined in (c) and referred to in (d). 4

5 (a) For any vector v ∈ Ck, let the matrix H = I − 2Pv (where Pv =
vv∗

v∗v
).

(i) Show with a sketch that the effect on an arbitrary vector x ∈ Ck

of left-multiplying x by H is to reflect x in P⊥vx, the normal to v

in the x–v plane. 2

(ii) Find the choices of vector v that make Hx, the Householder re-

flection of x, return a multiple of e1 where e1 ∈ C
k is a vector of

zeroes with one in the first position. 10

(iii) Which of the two choices found should be used and why? 1

(b) The following algorithm (Alg. 0.1) takes as its input an arbitrary m×n

complex matrix A. Explain the effect of line 5 and relate it to the

Householder reflection in part (a). 3

Algorithm 0.1 Householder QR Factorisation

(1) for k = 1 to n

(2) x = Ak:m,k

4
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(3) vk = x + sign(x1)‖x‖e1
(4) vk = vk/‖vk‖
(5) Ak:m,k:n = Ak:m,k:n − 2vk (v

∗
kAk:m,k:n)

(6) end

(c) The work done in Alg. 0.1 is dominated by the (implicit) inner loop

j=k:n over the columns of the submatrix Ak:m,k:n in line 5. Show that

the total operation count W for the algorithm is W = 2mn2 − 2/3n3

to leading order. 9

(Just show that the coefficient of n3 in W is −2/3 and that the coeffi-

cient of mn2 is 2.)

6 For any m×mmatrix A, Gauss Elimination without pivoting consists of:

Algorithm 0.2 Gauss Elimination Without Pivoting — in words

(1) for k = 1 to m− 1

(2) Add suitable multiples of row k to the rows beneath

(3) to introduce zeroes below the main diagonal in column k.

(4) end

(a) Show that each iteration of the above algorithm can be effected by

left-multiplying A by a matrix Lk = I− ℓke
∗
k where ℓk is the vector of

multipliers for the kth column of A (the first k entries of ℓk are 0) and

ek is a vector in Cn with one in the kth position and zeroes elsewhere.

Give a simple formula for the non-zero entries of ℓk. 5

(b) Show that for each k, L−1
k = I + ℓke

∗
k . 2

(c) Show that the matrix L = L1
−1L2

−1 . . . Lm−1
−1 is just I+ ℓ1e

∗
1 + · · ·+

ℓme
∗
m. 2

(d) Explain briefly why the result in (c) means that L is lower triangular. 1

(e) What special structure does A have after the algorithm has completed? 1

(See over for the rest of Q.6.)

5
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(f) When partial pivoting is applied, we have

Lm−1Pm−1Lm−2Pm−2 . . . L2P2L1P1A = U

where each Pj swaps row j with one of the rows j+1, . . . ,m (if neces-

sary) to make the absolute value of the “pivot” Ajj as large as possible.

Defining

Πj = Pm−1Pm−2 . . . Pj

L ′
j = Πj+1LjΠ

−1
j+1,

show that 6

Lm−1Pm−1Lm−2Pm−2 . . . L2P2L1P1 = L ′
m−1L

′
m−2 . . . L

′
2L

′
1 Π1.

(g) Show that the LU factorisation A = LU (without pivoting) is now re-

placed by PA = LU (with pivoting) where P = Π1 and L = L
′−1
1 L

′−1
2 . . . L

′−1
m−1.

2

(h) Finally, show that the matrix L is lower triangular as it was in the no-

pivoting case. 6

6


